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CHAPTER1

Introduction

1.1 The Structural Modeling Problem

Structural modeling is the process of forming a mathematical representation of a physi-

cal structure which will describe its behavior and/or performance. A major concern in

structural modeling is the proper choice of tools to achieve stated objectives. Problem

statements in structural analysis and design are usually made in fairly abstract ways, for

example, in terms of high-level descriptions of the object being studied and the calculations

being planned. It is up to the modeler to: refine this high-level description to appropri-

ate levels of detail; choose and exercise one or more modeling tools; and interpret and

assess the results produced. The structural modeling paradigm and it's component steps

are illustrated in Figure 1.1. Using the data from the physical structure, the structure's

physical response is found by evaluating both numeric and analytic models. The process of

generating structural response from structure data is called structural modeling.

A more abstract view of the modeling problem suggests that there are other consid-

erations that enter into the choice and exercise of structural models. Some of these evolve

from considering design as well as analysis. Other considerations could be viewed in the

context of linking the geometrical, functional, and behavioral aspects of a structure in order
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Quantitative Quantitative
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Physical Physical
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Figure 1.1 The Structural Modeling Problem (after F141)

that appropriate models are developed at each level of a design process [14].

Structural modeling is further complicated by the fact that knowledge of the object to

be modeled is incomplete; there may be conflicting or alternative goals; the utility of actions

may be influenced by other actions; there may be tradeoffs or constraints on resources: and

actions may produce unforseen consequences in the state of the modeling problem. As a

result, structural modeling tends to be a heuristic task, dependent on specific modeling

problems and situations.

1.2 Approaches to Structural Modeling

Attempts to address the difficulties described above have been made. Because of the heuris-

tic nature of the structural modeling process, algorithmic solutions have not been successful.

Developments in artificial intelligence (AI) and knowledge-based expert systems (KBES),
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however, have allowed reasoning on a level which is sufficiently abstract to adequately rep-

resent the structural modeling problem.

SACON, an early knowledge-based system, was built in part with an eye toward some

of these issues '1. An application of the diagnostic EMYCIN environment, the SACON

system was based on a system developed to advise physicians on the diagnosis and treat-

ment of infectious diseases '13>. SACON was concerned with capturing the knowledge of

structural engineering experts about the use of the MARC FEM package. In particular, it

was intended to encapsulate the pre-processing knowledge needed to choose an appropriate

analysis class, identify and apply the rules pertaining to the controlling behavior of a struc-

ture, and suggest the appropriate mathematical model (implemented within the FEM) for

performing the relevant calculations. An implicit boundary condition for the entire SACON

project was that an FEM package was the vehicle for whatever analysis was called for '1*.

Another project, the Buckling Expert, had similar aims, but extended its coverage

to incorporate suggestions for the user on interpretation of the results (post-processing)

and on possible re-design of the structure to achieve better behavior using multiple analysis

codes [15]. The Buckling Expert was a rule-based system designed to act as a expert consul-

tant during preliminary design of a shell structure. The system did involve the integration

of analysis codes with an expert in the process of building a structural model. However, the

analysis codes were only used at very specific, well-defined points in the model's history.

1.3 Motivation for the MUMS Research

The focus of the present thesis is related to the work of Turkiyyah and Fenves [141, but it

pertains to a somewhat different abstraction of the structural modeling and analysis pro-

cess. The emphasis herein is on the strategic choices in structural modeling, i.e., those
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concerned with the choice of method in the context of issues of time, purpose, cost, and so

on. Thus, we are concerned with developing a modeling plan that would allow the user to

make choices in several dimensions, including the following:

1. What is the purpose of the proposed calculations?

2. What kind of information is sought, and with what granularity?

3. Does the information have economic value?

4. Are there issues of timeliness that affect the choice of model?

5. What kinds of information are available as input to the model?

6. Can the functional, behavioral, and spatial aspects of a structural system be repre-

sented and integrated for this strategic task?

7. What engineering tools and methods are available (e.g., FEM codes, analytical for-

mulations, handbooks, back-of-the-envelope calculations, experiments)?

8. How are each of the tools and methods evaluated with respect to the decision dimen-

sions outlined the above seven questions?

The intent of this research is to provide computational support for - and in the

process make more explicit - the linking of numerical models with the intent behind

their use in engineering analysis and design. Of course, what makes this linkage hard

to accomplish is that the representations of the functional and behavioral aspects of a

structure are likely to be considerably different in expression. Thus, even if the syntax is

similar (i.e., the underlying geometrical representation of a building whether expressed in a
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CADD drawing or a FEM mesh), the semantics will not be. And it is the delineation and

expression of the differences in meaning that make this hard.

We are also concerned with knowledge acquisition because we are aware that any such

tool is Likely to be adopted by the engineering community only if it can be customized by

the user. That is, every design group has its own culture and its own approach to analysis-

in-design. To the extent that flexibility can be offered for the integration of local culture,

the chances that this technology will be adopted improve. Thus, one of the considerations

of the choice of architecture in this project is the ability to represent such knowledge at the

task-level, that is, at a strategic level rather than at the implementation-level of primitives

such as rules, frames, and so on that are usually used in knowledge-based systems. It is not

that such primitives are not used, but that the knowledge acquisition aspects are such that

the user can focus on the strategic domain issues.

A few final contextual notes. This project may also be seen in the larger context of

using knowledge-based systems to do better engineering by integrating them with other,

numerically-based programs that are in widespread use. The coupling of symbolic and nu-

meric computing is increasingly of interest and reports of work along these lines are begin-

ning to appear i9]. One example that might be of interest is the design of a knowledge-based

system for architectural code-checking, the LSC Advisor, to be used within an architectural

CADD system [5]. It is also worth noting that some of the strategic choices to be modeled

in this work, although made in a static environment, have parallels in decisions that in some

circumstances would be made more dynamically. Thus, recent work on real-time decision

problem solving could perhaps also be of interest i10,3].
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1.4 Strategic Knowledge in Structural Modeling

It turns out to be useful to classify knowledge as either substantive knowledge or strategic

knowledge. We closely follow Gruber's distinction between the two types of knowledge '7".

Gruber identifies substantive knowledge as knowledge about "what is believed about the

world" and strategic knowledge as "knowledge used to decide what course of actions to

take when there are conflicting criteria to satisfy and the precise effects of actions cannot

be known in advance". Another way of framing the distinction between the two types of

knowledge is to dif$rentiate between the "rules of the game" (substantive knowledge), on

the one hand, and "how to play the game" (strategic knowledge), on the other.

One example of the use of substantive knowledge in structural modeling is the fol-

lowing. In a beam bending problem, to calculate bending stress at a point, one must first

find the moment at that point, the distance of the neutral axis to the outer fiber, and the

moment of inertia of the cross section. In other words, substantive knowledge is knowledge

which is widely accepted and very specific domain knowledge. Another example of substan-

tive knowledge knowledge is the statement that "if the structure is a beam or a plate and

there is an in-plane load, then buckling is possible." One example of strategic knowledge

in the structural modeling domain is the statement that "if the model parameters are not

certain, then start with a model based on an analytical formula." While substantive knowl-

edge is necessary for generating a specific structural model, strategic knowledge is essential

for efficiently managing the process of structural modeling.
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The MU Architecture

To understand the MUMS system, it is first necessary to understand the MU (MU

is an acronym for "mrnaging uncertainty") architecture upon which MUMS was built.

The MU system is a programming environment for knowledge systems developed in the

Experimental Knowledge Systems Laboratory at the University of Massachusetts "3'.

2.1 Overview

The MU environment is a task-level architecture developed for reasoning with incomplete

or uncertain knowledge. It evolved from the underlying ideas in a program called MUM

(Managing Uncertainty in Medicine) which planned sequences of actions for the diagnosis

of chest and abdominal pain [3]. The goal of the MUM research was to create a system

to manage uncertainty in the diagnosis of chest pain. Emphasis was placed on studying

the process of the diagnostic sequence of questions and tests the physician conducts. The

MUM research project resulted in the creation of the MU system which has the following

characteristics:

1. The MU system assists in transforming strategic knowledge in the acquirable form (as

used by the expert) to the operational form (as used by an expert system).

7



2. The MU system is an example of how strategic knowledge will produce efficient solu-

tions to tasks in which uncertainty is a factor.

3. The MU system is a task-level architecture applicable to many fields in which experts

use similar strategies to solve problems efficiently.

One noteworthy design characteristic of MU is its lack of a predetermined control

strategy. The problem-solving strategies used in MU are defined in the control features in an

application's domain-specific knowledge. This control knowledge is acquired from the expert

and implemented by the knowledge engineer. In addition to the structural modeling domain,

the MU architecture las been applied experimentally to the fields of plant pathology and

fighting forest fires. The most important aspects of the MU architecture are described in

Sections 2.2 through 2.5.

2.2 Features

Features incorporate the information or evidence used in planning a strategy, evaluating

hypotheses, and making decisions. They are central to the operation of MU. For instance,

in diagnosing chest pain, a doctor collects evidence to support or deny a hypothesis he or

she might have. The evidence collected will depend on the features such as the reliability

of a test, or the cost of obtaining that evidence. In this role, features are used to guide the

diagnosis and arrive at a conclusion efficiently.

By observing expert problem-solving, it is apparent that experts make extensive use

of features - at various degrees of conspicuousness - in performing diagnostic tasks.

MU leaves to the knowledge engineer the task of identifying, defining, and making these

features operational in the MU knowledge base. There are four classes of features are which

are identified in MU:



* Statzc features are extracted from knowledge acquisition sessions with the expert and.

as the name suggests, do not change their values as the knowledge base (KB) is run.

The time taken to perform a specific test is an example of a static feature.

" Datum features are features which are found by prompting the user or performing

actions. An example of a datum feature is the result of specific test.

" Dynamic features are computed by evaluating features. The expert specifies how the

dynamic feature is affected. For example, a degree of belief in a hypothesis changes

with changes in its evidence

" A focus feature value is used to concentrate on or divert attention away from certain

actions. An example is the differential feature which contains the hypotheses or tests

which require the greatest attention.

In MU, instances of a feature are associated with evidence or hypotheses by means

of a combination function in a slot in the evidence or hypothesis frame. We define these

functions in the next section.

2.3 Combination Functions

An important aspect of the MU architecture involves combining evidence gathered during

the execution of the KB. This is the task of combination functions, which are essentially

IF-THEN rules specified by the expert. Unlike some knowledge systems, MU uses only

local combination functions; that is, a specific frame may include a combination function

whose value is used only within that frame and is not directly propagated to any other

node. However, combination functions in other nodes could access that value (if needed) to

calculate their own values. Local combination functions have two important benefits: (1)
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Analysis-types

Clusters ,direction

CF1 : - of

CF1 inference

Dat V

CF = Combination Function

Figure 1.1 The inference network in MU/MUMS

they are similar to the way diagnosticians actually use information '?I, and (2) they are

easy to acquire and implement.

Combination functions serve two purposes in MU. First, they are the means by which

information between nodes is shared and updated in the inference network (see next section).

With each additional piece of evidence or data, the combination functions are run and the

results are stored. The second purpose of the combination function is to provide links

of causality which may be exploited for prospective views of actions. In other words,

combination functions provide answers for "What if ...?" questions.

1.4 The Inference Network

The movement of data by the combination functions creates an inference network in MU

(see Figure 1.1). The inference network is the means by which information is moved to

make intermediate conclusions about the problem.
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Conceptually, nodes lower down in the inference network "support" the nodes above

them by providing data (or evidence) which is used by these higher nodes. Evidence is

combined into significant groups (called clusters) by that node's combination function from

data generated in the lower nodes. The data may be answers to questions posed to the

user or the result of some test or analysis. These data are then combined in the clusters

and further combined in the hypotheses nodes to arrive at a conclusion. In the inference

network, the clusters and hypothesis are conclusions based on data that has been entered

by the user or data that has been concluded from data or from other conclusions.

2.5 Strategy Rules

The MU architecture does not inherently provide a specific strategy. There are no domain-

specific strategy rules to choose an action in a given situation. Rather, MU provides a

general strategy rule control cycle which loops through the following rules until the problem

is solved (i.e. a goal is found):

" Focus rules choose actions which are possible in a given state.

" Filter rules remove actions from consideration in a given state.

" Preference rules specify one set of actions over another.

In the focus ==*filter ==prefer cycle, MU does not provide criteria for assessing how or why

an action should be focused upon, filtered, or preferred. Ultimately, the rules are dependent

upon the application. The rules are, however, closely tied to the features mentioned in
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Section 2.2. An example from the MUM knowledge base is as follows.

IF (= (current-goal) quick-diagnosis)

AND (in ?action (proposed-actions))

AND (> (cost ?action) low)

THEN (filter ?action)

This rule will filter actions which have a cost feature greater than "low" if the current

goal is a quick diagnosis. The strategy rule cycle (focus on repeats until a goal is reached or

,ntil no actions are possible, e.g., until all actions have been filtered. For such an impasse,

the Acquiring Strategic Knowledge (ASK) assistant i81 was developed.



CHAPTER3

Acquiring Strategic Knowledge

for Structural Modeling

3.1 Background

MUMS is a KBES designed to aid in modeling structural plate problems. The knowledge

contained within the MUMS system can be divided into the two types mentioned in Chapter

2: strategic and substantive. The strategic knowledge is used as a "tour guide" to man-

age decision-making in the structural modeling process. The substantive knowledge - the

knowledge about the physical world - is used to conclude facts about the structural model

given some set of structural modeling data. While both types of knowledge are necessary

in effective structural modeling, each type is acquired by different means. For instance,

knowledge used for answering questions such as "How do I model a plate when the loading

is uncertain?"; "How can I arrive at a model when I have limited time?"; or, "What type of

model do I choose when I have both serviceability and strength requirements to consider?"

is almost exclusively a product of experience derived over many years of structural model-

ing. Whereas, substantive knowledge (e.g., "Does the geometry and loading of the problem

indicate a bending problem?", "Will the plate be subject to large vibrations?", and so on)

may be derived from the structural literature or from the structural modeling expert.

13
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To obtain the necessary strategic and substantive knowledge for the MUMS system.

two sources were used: (1) interactive knowledge acquisition sessions with an expert struc-

tural modeler, and (2) the structural modeling literature. The major source of the strategic

structural modeling knowledge for the MUMS system was the domain expert, Dr. Clive

L. Dym of the University of Massachusetts Department of Civil Engineering. Many sam-

ple plate problems were generated for which Dr. Dym provided a structural model and

analysis. The problems were structured so as to illuminate the issues involved in the struc-

tur°. modeling process (see Section 3.3). The remaining structural modeling knowledge to

be used by MUMS was obtained from the literature. The knowledge from the structural

modeling literature is almost always substantive knowledge. It will not yield information

for directly deciding which "direction" a structural model should take. For example, the

equation governing the deflection of a plate can be found in any book on the analysis of

plates (e.g. !61):

v 4
W _ q(z, y)

D

As far as the strategy in the structural modeling process is concerned, this is where the

usefulness of the literature ends. It is up to the structural modeler to decide if the equation

is even valid for the problem at hand; if other models or analyses can be constructed to

yield adequate results with less effort; or if a more detailed analysis is prudent.

3.2 Identifying Knowledge to be Captured

One of the first tasks in developing a structural modeling system like MUMS is to identify

the knowledge to be acquired. To do this, a representation of the structural modeling process

was created. Such a representation must accurately reflect the actions and decisions of the

structural modeling expert while at the same time must make explicit the knowledge to be
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captured. Figure 3.1 shows the representation we developed and used for this study.

This figure illustrates the structural modeling process in general, although the only

concern here is with the modeling process as it relates to plate structures. On closer inspec-

tion of Figure 3.1, it may be seen that elements of uncertainty may be present at certain

points in the structural modeling process. Also, it may be noticed that this uncertainty

may have an affect on later actions - even whether these later actions are performed or not.

For example, one may not be sure of the values assigned to the modeling variables. Are

the loads completely known? Just how certain are these loads? Is the structure's geometry

adequately represented in the model? Should dynamics be included?, etc.

There may be uncertainty in in the results of performing certain modeling actions

(e.g., "Has a preliminary analysis satisfied me that they are adequate for my needs?").

Even the modeling goals may be less than certain (e.g., is the structure's strength more

important than the structure's serviceability?).

MUMS is an attempt to make explicit the issues involved in answering these questions.

For any given box in Figure 3.1 one would like to know: (1) why the expert proceeded to

that box on the path from problem description to complete structural model; (2) what

features of the problem led to a decision; and (3) how the features affected the modeler's

decision. The answers to these questions comprise the structural modeling strategy.

3.2.1 Eliciting Knowledge from the Expert

One of the main reasons for producing the structural modeling representation of Figure 3.1

was to identify the knowledge (strategic and substantive) needed for MUMS. Once the

knowledge was identified, a means for obtaining and transforming the knowledge for use

in MUMS was devised. This section describes the means for acquiring the knowledge for

MUMS.
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The task of transferring structural modeling knowledge from an expert to the MUMS

system was accomplished using knowledge acquisition sessions with Dr. Clive Dym as the

domain expert and Steven Salata as the knowledge engineer. The sessions consisted of

interviews with the domain expert in which sample plate problems were presented to the

expert and the steps he used to solve the problems were recorded. Because of the structural

mechanics expertise of the domain expert, the sample problems and subsequent knowledge

acquisition sessions concentrated on plate problems using analytical solutions.

The sample plate problems and knowledge acquisition session were structured so that

knowledge acquisition about strategic decisions could be easily isolated and extracted from

the session protocol. The domain expert was asked to actually solve the problems rather

than to describe how the problems should be solved '111. Gruber !7' has found that experts

most easily convey their problem-solving strategy through justifications of their actions. He

found that experts had difficulty in explaining their strategy but could easily give reasons

for their actions. Thus, problems were designed to focus on the factors (which we will call

"features" from now on) which affect the structural modeling process. The precise effect

these features have on the process of structural modeling is of tantamount concern (see

Section 5.1 for more on features and their uses in MUMS). Again, from the knowledge

acquisition we are trying to discover what (and how) features led to a decision in the

structural model. An abbreviated example problem and resulting knowledge acquisition

session are presented to illustrate some of the knowledge acquisition ideas. In this example,

EX: indicates comments made by the expert and K.E: identifies comments made by the

knowledge engineer.
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Problem:

A structural model is to be completed on the following simply supported struc-

ture. thickness h. a/b = 2, under a distributed load, q(z, t) applied at the center:

ss

b

K-E: Here is a picture of the problem. You are to provide a structural model and
analysis.

EX: What is the purpose of the analysis for this structure?

KE: You are to perform a detailed design.
EX: What is the nature of the load?
KE: It is a continuous function of time and space.

EX: If a detailed design is needed, long-term and short term responses will be
computed.

EX: I will use D V 4w + phw = q(z, y, t) since the solution converges quickly,
because of the problem's simple geometry, and because the plate is simply
supported all around.

EX: What is the thickness of the plate?

KE: You can assume that the thickness is small in comparison to a or b.

EX: I will now find the natural frequency of the plate.

Then I will find the deflections from biharmonic equation.

Then I will find the support forces, the stresses, and the strains resulting
from deflections.
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After the expert has completed the structural model, questions are asked by
the knowledge engineer to clarify points which may be ambiguous or which may

need further explanation.

K_E: Why did ask about the nature of the loading?

EX: The loading type is needed to find the period of interest which is different
for shock, harmonic loading, step...

K_E: What would you do differently if the loading were a shock load?

EX: I would first find the approximate response (which is double the static re-
sponse) to compute approximate magnitudes of stress, strains. From the
approximate magnitudes of the stress and strains I can then decide if a
linear analysis is appropriate.

K_E: Why did you choose the biharmonic equation?

EX: The solution is general and is easily solved for these loading and support
conditions.

K_E: Why did you ask the thickness?

EX: If the thickness is on the same order of magnitude of the other two dimensions
of the plate, then shear deformation may be significant.

This knowledge acquisition example shows how the strategic information was ac-

quired. Questions such as : "Why did you do this task?", "Why is this important?", and

"What if this fact were true?" provide clues to the structural modeler's strategy. From the

knowledge acquisition sessions, we try to identify (1) the features used by structural mod-

eler's, and (2) how the features are used by experts in formulating a structural modeling

strategy.

However, a fact concerning modeling strategy is hidden in this example. It is the fact

that the expert is an expert in using analytica solutions for structural mechanics problems.

This fact is made evident in this sample problem and clearly influenced the analysis type

chosen (and the modeling process in general). Most experts in structural modeling are

experts in one - or at most a few - type of analysis which influence the strategy they

will choose in creating the structural model. Thus, they will develop modeling strategies

(consistent with the problem features) to take advantage of their analysis strengths.
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3.2.2 Judging the Suitability of Knowledge

As the structural modeling knowledge is extracted from the knowledge acquisition session

protocols, it must be judged for suitability and, where appropriate, inserted into the KB.

Whereas the strategic knowledge of an expert in structural modeling may be idiosyncratic

(as hinted above), it does work. If it did not, an expert in structural modeling would not

be considered an expert. Judging the suitability of substantive knowledge, the the other

hand, is much simpler. Substantive knowledge acquired during knowledge acquisition can

often be verified from the literature.

Once the strategic and substantive knowledge is obtained, it must be put in an op-

erational form to be used by the MUMS system. The issues involved in transforming and

representing expert knowledge for use by MUMS are presented next.



CHAPTER4

The MUMS Knowledge Base

4.1 Background and Overview

The details of the MUMS system are described in this chapter. As indicated in Chapter

2, MUMS is an application of the MU KB. MUMS (and MU) is implemented on a Texas

Instruments ExplorerTM II workstation using the KEETM programming environment. KEE

provides the AI progranuning constructs of which MUMS is based - frames, slots, and

facets. Frames are knowledge structures used to group together a collection of attributes

that a given object normally possesses '12]. The attributes and their associated information

are stored in the frame's slots. These attributes are not necessarily constrained to physical

attributes of the objects they describe. They may also contain procedures for obtaining

their values. Finally, each slot of the frame has many facets which contain implementation

details of the slot's allowable values, how the slot is displayed, etc. KEETM also allows

specific frames to inherit attributes from a more general frame.

The structural modeling knowledge in the MUMS KB is embodied entirely in the fea-

tures, the strategy rules, and the frames of the inference network. As structural modeling

knowledge is acquired from the expert, it is evaluated and inserted into the MUMS sys-

tem. This chapter describes the means for the evaluation and representation of structural
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modeling knowledge in the MUNIS KB.

4.2 Features

Section 2.2 introduced features as incorporating the information experts use to make deci-

sions or, in effect, form a strategy. Section 3.2.1 explained that features are acquired from

the expert. More specifically, identifying and judging the significance of a feature is usually

accomplished during many knowledge acquisition sessions. During these sessions, partic-

ular attention is paid to the facts of the problem which produce actions in the modeling

process (as opposed to those facts which yield conclusions, for example). Figure 4.1 shows

the features section of the MU.IS KB. The four types of features (data, dynamic, static,

and system) dictated by the MU system are clearly visible. To the right of the four types

of features are those features identified in the structural modeling process.

One of the observed features is the expertise of the modeler in exercising a par-

ticular structural analysis. Choosing a particular structural analysis is influenced (and

complicated) by many features, including the level of expertise the modeler has gained in

any one analysis type. For example, a modeler may have many years experience with a

particular structure type using a particular finite element package and thus would have a

preference for using the familiar analysis strategy on a problem which also seems familiar.

The expertise feature frame in MUMS is the representation of this fact.

Notice in Figure 4.2 that expertise is a static feature. Static features will not change

during the modeling process - the modeler's expertise is considered a constant. The

expertise feature of a particular analysis type is assigned its value when MUMS is first

executed. At this point, the user is requested to enter his or her expertise in the analysis

types of which MUMS knows. In addition to a type, feature have a value. The expertise
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expert ise

Feature-type: Static
Value-type: Ordinal
Value-range: (novice average expert)
Combination-function: local to an analysis
Value: to be inserted in the appropriate analysis type

Figure 4.2 The definition of the expertise feature

feature's value can be either novzce, or average, or expert. From knowledge acquisition

sessions, these three feature values of expertise were identified as being significant in

affecting how an analysis is chosen. Finally, the "Combination-function" and "value" slots

are included to indicate that this feature's value is not used locally in the expertise frame.

Rather, the value of expertise is a feature of an analysis and is stored with that analysis.

Once the value is initially set by the user, it will be used by the analysis types as needed.

Another feature type of the MUMS system is the dynamic feature. Unlike the static

features whose values are set before the modeling process is begun, the dynamic feature

derives its value from the evaluation of other features. Its value is computed during the

modeling process. An example is the trigger-level feature of Figure 4.3.

trigger-level

Feature-type: Dynamic
Value-type: Ordinal
Value-range: (triggered not-triggered)
Combination-function: local to an analysis
Value: to be inserted in the appropriate analysis type

Figure 4.3 The definition of the trigger-level feature
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While the trigger-level feature appears to be very similar to the expertise feature.

its value is computed quite differently. To see how the value of a dynamic feature is found.

one must look at a node in the inference network that uses this feature. An example is the

buckling node which has the following combination function:

IF value Of in-plane-load

IS known

AND value OR in-plane-load

IS NOT none

THEN trigger-level OF buckling IS triggered

This rule translates to the statement that, "If there are in-plane loads on the plate,

then there is a possibility of buckling." This combination function brings the suggestion of

buckling into the structural model. Just how the buckling is dealt with later in the model is

not specified since buckling might be handled differently depending upon how the modeling

progresses.

The other two types of features in MUMS are system and data. System features are

used by the MUMS system to keep the inference network (and thus the structural model)

updated. Data features are simply the values of the model data. An example of a data

feature is the value of the structure's material.

Features play their main role in combination functions within nodes in the inference.

Section 4.4 illustrates more uses of features in combination functions. See Appendix A for

a listing of the complete listing of features we have identified for structural modeling.
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4.3 Strategy Rules

The MU system from which MUMS is based does not provide a pre-defined strategy for

solving problems and, in that context, MU applications are not constrained to a particular

strategy. However, MU does supply the means for easily creating a strategy. This is done by

allowing the knowledge engineer (or the accompanying ASK knowledge acquisition program)

the ability to add strategy rules to provide the necessary strategic control of the system.

The strategy rule control cycle MU provides is shown in Figure 4.4.

To illustrate how the control cycle operates and to clarify the function of each strategy

rule type, consider the following example from the MUMS KB. When the MNIUMS system is

fjrst begun, the strategy rule cycle is invoked and the first step (Run focus rules) is taken.

The function of the focus rules is to indicate which actions are possible (from all actions)

when the current conditions of the structural model are considered. All focus rules are

tested and any focus rule which is applicable in that given situation is run. In this example,

Focus rule 2 is the first rule to be run:

Focus rule 2: Ask Identifying Questions

If:

(IS (DIFFERENTIAL) :EMPTY)

(IN ?ACTION

(MEMBERS-OF INITIAL-QUESTIONS))

Then:

(PROPOSE ?ACTION COMPLETE-MODEL)

Since there is no active hypothesis (e.g. there are no structural analyses which we are

considering), both Focus rules 2 and 3 propose questioning the user for input. These actions

are then passed to the filter rules which remove some of the questions from consideration
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Run focus rules

proposed actions

Run filter rules filtered actions

acceptable actions

propagate
effects of
actions Run preference rules less preferred

throughout
working_
memory preferred actions

empty set? yespass__yes impasse

knowledge
x tdisagrees? acquisition

expert dialogue

Execute actions

Figure 4.4 The strategy rule control cycle in MU/MUMS [8'
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- because those questions are inapplicable - using Filter rule 2:

Filter rule 2: Filter Inapplicable Questions

If:

(IS (APPLICABILITY ?ACTION)

INAPPLICABLE)

Then:

(FILTER ?ACTION needs prerequisites)

The questions which haven't been removed from consideration are then passed to the pref-

erence rules. The preference rules will act on the remaining questions to choose the "best"

one to ask (the best action). The "best" action is the action which will accomplish "the

most" given the present state of the model. This may seem vague. but the preferred ac-

tions may depend on many (possibly conflicting) criteria. For a complete listing of MUMS

strategy rules see Appendix B.

A major reason for choosing to study the application of the MU architecture to struc-

tural modeling was the similarity observed in the two fields of prospective medical diagnosis

and structural modeling. For example, both prospective medical diagnosis and structural

modeling are concerned with choosing actions with the minimum cost and maximum safety,

both tasks involve acting under uncertain conditions, and in terms of the MU system, both

tasks focus on the management of a process as opposed to just obtaining the result of a

process.

4.4 The Inference Net

Most of the knowledge in MUMS (and MU) is resides in the system's inference network.

Recall from Section 2.4 that the inference network consists of nodes containing some form



29

of knowledge and the Links between the nodes. These links dictate the effects the two nodes

at the ends of the link will have on each other. It may be useful to visualize the modeling

knowledge moving from one end of the inference network to the other as a structural model

evolves. When a structural modeling problem is first undertaken, a modeler has a set of

V'givens" and or assumptions about the problem. In the inference network, these are called

data. And, as the model progresses, the modeler makes certain intermediate inferences

about the model by combining the data he or she was given or assumed. In the inference

network these combinations of data are called clusters, while the rules for combining the

data are called combination functions. Depending upon the complexity of the model, a

structural modeler may combine and re-combine data many times to create additional

inferences (clusters). The ultimate goal is for an inference (or many inferences) to point

to or suggest the correct analysis type for the given features of the problem. In the MUM

system for the diagnosis of chest pain, this is analogous to diagnosing the correct ailment.

As with chest pain diagnosis, the structural modeling process in MUMS should not stop

there. Once a structural analysis is performed, new information may become available

which may affect the objectives which the model is intended to achieve. Until all objectives

are satisfied, the new information will be included in the inference network with the aim of

performing the correct (and possibly different) structural analyses.

In the MUMS research, a major task has been the identification of the significant

groupings of data used by the expert in arriving at intermediate inferences. Along with

the groupings of significant structural knowledge, there is an interest knowing how the

knowledge was combined. An example from the MUMS KB will illustrate the knowledge

being sought. Figure 4.5 shows portions of clusters of modeling data and how the data

are combined to form new conclusions. Each represents a grouping of evidence leading

(eventually) to an analysis in structural modeling.
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cluster linear-model

combination
function IF confirmed plate-structure OR confirmed beam-structure

AND confirmed deflection < h/L
AND confirmed material = steel

THEN confirmed

cluster linear-beam-theory
combination

function IF confirmed pure-bending
AND confirmed beam-structure
AND confirmed linear-model

THEN confirmed

cluster membrane-structure
combination

function IF confirmed linear-beam-theory
AND confirmed top-fiber-stress >> bottom-fiber-stress

THEN confirmed

Figure 4.5 Some clusters for structural modeling
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analysis : flexure-formula
triggered-by: confirmed linear-beam-theory

combination
function : IF confirmed objective = find-stress

AND confirmed beam-structure
THEN confirmed

IF confirmed objective = find-stress

AND confirmed membrane-structure

THEN disconfirmed
IF confirmed objective = find-stress

AND confirmed plate-structure
THEN supported

Figure 4.6 Part of the analysis frame for flexure-formula

In a structural modeling session, the general strategy is to first gather data for the

model. As the data is acquired, it is combined in clusters such as those in Figure 4.5.

In this example, the linear-beam-theory cluster uses the values of plate-structure,

beam-structure, deflection, and material to get its "confirmed" value. When linear-

beam-theory is confirmed, it can then be used to support other conclusions made later in

the structural model. The flexure-formula is an example of another node in the inference

network that uses the value of the linear-beam-theory cluster:

Just as data is combined in clusters, clusters are combined to lead to a structural

analysis cluster. In this case, the flexure-formula is shown. Here, the cluster linear-

beam-theory is used to trigger the hypothesis that the flexure formula is the appropriate

structural analysis to be performed on the current model. A trigger in MUMS is a defined

feature which immediately activates a hypothesis (the flexure-formula, in this example)

when some piece of data is found (here, the linear-beam-theory cluster). Thus, the flexure

formula analysis will be suggested here when a model based on the linear beam theory is

concluded. The flexure formula will not always be the proper analysis ap- roach when a

linear beam model is concluded, however. For example, Figure 4.6 shows that when the
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current modeling objective is to find an internal stress and the structure has been concluded

to be a plate structure (concluded from another cluster), the flexure formula is "supported"

but not "confirmed". This means that the flexure formula could be appropriate but that

other data are needed to confirm its use. The other data could affect whether the flexure

formula has already been applied to model or whether the application of the flexure formula

will provide any new (and needed) data for the model.

a|



CHAPTER5

MUMS Plate Problem

An example of the MUMS system in operation is now given. In this example modeling

session, MUMS is demonstrated on the user-level, i.e., as it would appear to the user running

the system. At the user's level, MUMS appears to be following the general modeling strategy

shown in Figure 5.1. When the system is first started, its focus is on gathering data for the

structural model. Most of the data for the structural model is requested from the user. As

modeling data is entered into the system, it is propagated through the inference network,

providing intermediate modeling conclusions. Eventually, the modeling data lead to the

choice of an analysis. Performing the analysis, in turn, creates new modeling data which,

then is used to cycle through another loop in Figure 5.1.

When a MUMS modeling session is initiated, the user is requested to assess his or

her expertise in performing the various structural analyses. The request and response are

displayed in the window labeled "Analysis Types."

33
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gather data

( -evaluate model
Sformulate

model

~choose model

Sinterpret

model

yes
satisfactory model? done.

I no

Figure 5.1 MUMS Control Structure
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Analysis Types Novice Average Expert

BACK-OF-ENVELOPE C - -

ANALYTICAL-FORMULAS " -

QUALITATIVE-REASONING '- '

FEM -
TABLES C - -

FIELD-TESTS - -

LAB-EXPERIMENTS -

Here, the user chooses the expertise he or she possesses in each type of analysis. If

the expert value is chosen for a particular analysis, the system will give more support for

choosing that type of analysis in formulating the model. On the other hand, the choice

novice will give less support. Once this is done, MUMS starts to ask questions about the

structure by asking a question about focus, as seen in the next window.

What is the focus of the current analysis?

Preliminary-analysis

Fina l-design

Investigation

Cost-estimate

Feasibility-study

The box around Final-design indicates that the user has chosen the Final-design

option. In other words, the ultimate goal of the user is a complete, final design of a

structure. Now that the system has the purpose for the current structural model, it focuses

on acquiring the data for the structure. According to the MTTMS strategy rules, free (or

cheap) actions which provide model data are preferred. Using this rule, MUMS then offers

the user the following choice of data types to be entered:
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Please choose something to ask or perform.

b;/a

in-plane-loads

out-out- plane- loads

material

h/I

The user may choose to enter the values of any one of these five facts about the

structure. In this example, the value of b/a is chosen first. Then the system asks for the

value of b/a:

What is the value of b/a?

2.0

The user enters 2.0. Until the modeling data provide evidence to support the choice

of an analysis, the user is prompted for more data (as in the following series of questions):

Please choose something to ask or perform.

in-plane-loads

out-out- plane- loads

material

IE

The user chooses to enter the value of h,1:

What is the value of h/l?

25

And then the user is again prompted to choose a data type.
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Please choose something to ask or perform.

in-plane-loads

out -out- plane- loads

The user chooses to enter the value of the structure's material:

Choose the material of the structure.

aluminum

timber

stone

concrete

plastic

And then another data prompt follows.

Please choose something to ask or perform.

I in-plane-loads

out-out-plane-loads

This time, the user enters the value of the in-plane-loads:

Choose the IN-PLANE loadings.

harmonic

pre-stress

random

shock

step

thermal

static

The value of the out-of-plane-loads is the only model data left to acquire:
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Please choose something to ask or perform.

out-out- plane-loads

The user must enter the value out-of-plane-loads.

Choose the OUT-OF-PLANE loadings.

harmonic

none

pre-stress

random

step

thermal

static

As the modeling data (such as the material or h/o are entered by the user, MUMS

propagates the effects of the new information through the inference network using the

combination functions. As a result, new, intermediate conclusions about the model are

generated. The status of MUMS conclusions are always visible to the user in the MU

Output Window:
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MU Output Window

[WMJ Strength-of-assumption of DYNAMIC-MODEL is now
STRONGLY-SUPPORTED

[WMJ Strength-of-assumpti- n of BUCKLING is now DISCONFIRMED

[WMJ Trigger-level of CRACKING is now TRIGGERED
[WM] Strength-of-assumption of BRITTLE-FRACTURE is now SUPPORTED

[WM] Strength-of-assumption of FEM is now SUPPORTED
fWMJ Strength-of-assumption of BACK-OF-ENVELOPE is now CONFLICTING
[WM] Trigger-level of BACK-OF-ENVELOPE is now TRIGGERED
[WMI Applicability of PERIOD-OF-INTEREST is now APPLICABLE
[WM] Strength-of-assumption of ANALYTICAL-FORMULAS is now
STRONGLY-SUPPORTED

[WM] Trigger-level of SERVICEABILITY is now TRIGGERED

[WMI Trigger-level of STRENGTH is now TRIGGERED

From the MU Output Window, the various conclusions about the model are visible.

At this stage of the model in this example, only intermediate conclusions can be made. This

problem's data, for example, indicate that a BACK-OF-ENVELOPE calculation has been

triggered. In other words, the BACK-OF-ENVELOPE calculation can provide data for the

model, but at the present, it is unclear if the BACK-OF-ENVELOPE analysis is the best

action to take.

The process of obtaining data from the user, propagating the data's effect in the

inference network, and generating new conclusions is continued until an analysis hypothesis

is confirmed. When an analysis hypothesis is confirmed, the system will display this fact

in the MU Output Window (e.g., Strength-of-assumption of BACK-OF-ENVELOPE is

CONFIRMED).
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Conclusions

MUMS is a partially implemented knowledge-based system for representing strategic

choices in structural modeling. Based on the MU architecture for performing diagnostic

reasoning. the MUMS system has an undeniable diagnostic disposition. And since structural

modeling is not a purely diagnostic process, MUMS does have weaknesses in accurately

representing structural modeling. However, the MU foundation does provide a strong base

for flexible knowledge representation in structural modeling. This chapter describes some

of the strengths and weaknesses of the MUMS system and suggests some future directions

for research in the area.

6.1 MUMS: A Diagnostic System for Structural Modeling

The focus of the present research is the study of the application of MU, a task-level archi-

tecture for prospective diagnostic reasoning, to the structural modeling domain. The MU

system was chosen for study because of the many similarities between prospective diagnosis

and the process of structural modeling. Prospective diagnosis is concerned with selecting

actions based on their potential consequences to the patient while structural modeling is

concerned with selecting structural analyses based on their ability to provide information

40
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to accurately represent the response of a structure. Furthermore, a prospective diagnosis

may be complicated by conflicting goals. For example, a physician can perform a very

painful or costly test as a means of evaluating a disease hypothesis when a less invasive test

can be performed with little loss of diagnostic evidence. Whether the test is actually done

depends on many factors including cost, time, and evidence gained. In structural modeling,

an engineer can perform an FEM analysis on a particular structure (which may take hours)

to find internal stresses when an analytical formula may be solved in a fraction of the time

to provide more valuable information about the structure's response. Again. whether either

analysis is performed depends on the time available, cost, model information gained and

othcr features.

The MU system has many attributes which make it particularly useful as a structural

modeling assistant. First, MU was developed to facilitate knowledge acquisition '8'. To this

end. the knowledge in MU was made declarative not procedural. That is, knowledge in MU

is represented in "localized packets" of knowledge whose "meaning'" is explicit rather than

in procedures to find that knowledge. Another product of MU's declarative knowledge base

is the fact that explanations of actions are easily given in terms of the assumptions leading

to the actions. This is accomplished simply by backtracking in the inference network to

find the clusters which yield evidence for the action in question. Furthermore. maintenance

is much easier since much of MU's knowledge is localized, that is, in that any one piece of

knowledge does not affect large portions of the knowledge base. When knowledge does affect

other knowledge in MU, it is done explicitly through the combination functions. In addition.

a virtue of MU's declarative knowledge base is the fact that it is more easily acquired from

structural modeling experts. This was very clear in the knowledge acquisition sessions.

The reasons for performing modeling actions were more easily elicited from the expert than

were rules for performing structural modeling actions. The structural modeling expert is
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more likely to provide modeling knowledge in the form "I am using an analytical formula

because the loading is uncertain and the analytical formula gives a more general solution."

than in the form 'If the loading is uncertain and an analvtical formula gives a more general

solution, then choose an analytical formula."

In the course of the MUMS research, it was found that MU's knowledge representation

is consistent with the structural modeling task. Specifically, expert structural modelers use

features in deciding what direction a structural modeling process should take. Surprisingly.

many features used in diagpostic reasoning are the same as or similar to those used in

structural mdeling. Physicians use the trigger feature to bring to n:.i , c a diseases

when specific data are revealed. Analogously, engineers use the trigger feature to bring to

mind a specific functional specification when certain modeling data are present. An example

is the assumption of fatigue. When the number of loading cycles on a metal structure is

large. the possibility of fatigue is quickly brought to mind. Moreover, as with physicians

performning medical tests, structural modelers are not assumed to have equal access to tools

for performing analyses or equal abilties in analyzing the results. Therefore. the modeler's

environment and the ability of the modeler is a factor to be considered .5_.

As expected, the MUMS research also revealed that the analogy between structural

modeling and diagnosis is not perfect. In the analogy between medical diagnosis and struc-

tural modeling used here. the goal of a top-level goal of a diagnosis is the treatment of

a disease using an assortment of medical tests and treatments. In structural modeling.

the top-level goal is the formation "complete" model through the performance of various

structural analyses. In structural modeling, the goal itself, the "complete" model, is often

uncertain, whereas the clinical diagnostician's task is to find "what's wrong " In structural

modeling, there is no "what's wrong."
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6.2 Future Directions

A notable finding of the M.-MS research is that the expert structural modeling knowledge

of a single expert is likely to be linited to one or. at most. a few types of structural analyses.

An engineer may be proficient at applying boundary element theory, for example. but not

at applYlig the finite element method. An engineer may be expert at analytical formula

applications for static problems. but not proficient at dynarmic problems. An engineer may

even be an expert in using one FEM package. but not another. Aside from the provisions

for these differences - which must be included in a structural modeling assistant, the

concerns of acquiring knowledge for such an assistant have to be considered. The pilot

implenientat ion of the MUMS system is based on the expert kno, ledge of one expert and

so is skewed toiard analytical formnula analyses. To build a complete structural modeLing

assistant. knc,wledge acquisition must dc-ne with several structural modeling experts. and

differences or conflicts in expert modeling strategies must be addressed and incorporated in

the system.



A P P E N D i x A

Defined Features of MUMS

This appendix gives a few examples of the four different types of features defined in the
MUNIS system.

- Data Feature-

The value feature:

Feature-type: Data
Value-type: Unspecified
Value-range: Unspecified
Value: given by user or computed from model data

- Dynamic Features-

The active-p feature:
"An analysis which has been triggered but riot ruled out is active,"

Feature-type: Dynamic
Value-type: Ordinal
Value-range: (active not-active)
Combination-function: local to an analysis
Value: to be inserted in the appropriate analysis type

44



45

The applicability feature:
"A question which is relevant to the current model. For example, a question about loading
cycles is applicable if the structure has a dynanic load."

Feature-type: Dvnamic
Value-type: Ordinal
Value-range: (applicable inapplicable)
Combination-function: local to a question
Value: to be inserted in the appropriate question frame

The strength-of-assumption feature:
"This feature is the value of the current degree of belief in the support for an )bject in the
inference network."

Feature-type: Dynamic
Value-type: Ordinal
Value-range: (Disconfirmed Strongly-detracted Detracted

Conflicting Supported Strongly-supported Confirmed)
Combination-function: local to a cluster or analysis-type
Value: to be inserted in the appropriate cluster or analysis

The potential-evidence feature:

"The set of data which can potentially affect the level of support for an analysis. For
example, an assumption of non-linear behavior will affect the support for a more complex
analysis (increasing its level of support, in this case)"

Feature-type: Dynamic
Value-type: Ordinal
Value-range: (applicable inapplicable)
Combination-function: local to a frame
Value: to be inserted in the appropriate frame

- Static Features -

The availability feature:
"This feature is used in data and analysis nodes in the inference network to indicate
whether the data or structural analysis is available to the modeler."

Feature-type: Static
Value-type: Ordinal

Value-range: (available not-available)
Combination-function: local to a frame
Value: to be inserted in the appropriate analysis frame
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The cost feature:
"This feature is a measure of the cost for obtaiiing the data for a particular intermediate
conclusion or analysis."

Feature-type: Dynamic
Value-type: Ordinal
Value-range: (free cheap low medium high very-high)
Combination-function: local to a frame
Value: to be inserted in the appropriate frame

The number-of-dimensions feature:
'This feature represents the number of dimensions for the current model (a beam. a plate,
or a solid, for example)"

Feature-type: Dynamic
Value-type: Ordinal
Value-range: (1 2 3)
Combination-function: local to a analysis
Value: to be inserted in the appropriate analysis

- System Features -

The network-dependents feature:
This feature keeps track of the nodes in the inference network which are dependent in

any way on a particular object."

Feature-type: System
Value-type: a node in the inference network
Value-range: any inference network node

Combination-function: implementation-level
Value: to be inserted in the appropriate node by the knowledge engineer
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Strategy Rules in MU/MUMS

- Rules that FOCUS -

This will focus upon actions which have a possibility of leading to a conclusion e.g. an
intermediate conclusion to confirm a cluster.

Focus rule 1: Focus on Conclusive Evidence

If:

(IS (DIFFERENTIAL) :NONEMPTY)
(IN ?ACTION

(POTENTIAL-EVIDENCE

DIFFERENTIAL))

Then:

(PROPOSE ?ACTION

GATHER-EVIDENCE-FOR-DIFFERENTIAL)

This rule will choose questions (from the set of intial data-gathering questions) to ask
when MUMS cannot find an appropriate analysis using the data of the current model.

Focus rule 2: Ask Identifying Questions
If:

(IS (DIFFERENTIAL) :EMPTY)
(IN ?ACTION

(MEMBERS-OF INITIAL-QUESTIONS))
Then:

(PROPOSE ?ACTION COMFLETE-MODEL)
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This rule will choose questions (from the set of general data questions) to ask when
MUMS cannot find an appropriate analysis using the data of the current model.

Focus rule 3: Ask Model Data Questions

If:

(IS (DIFFERENTIAL) :EMPTY)

(IN ?ACTION
(MEMBERS-OF GENERAL-QUESTIONS))

Then:

(PROPOSE ?ACTION COMPLETE-MODEL)

This rule will end the modeling session when MUMS concludes that a certain analisis
should be performed.

Focus rule 4: Halt on Confirmed Hypothesis

If:
(IN ?HYPO (DIFFERENTIAL))

(IS (STRENGTH-OF-ASSUMPTION ?HYPO)

CONFIRMED)
Then:

(PROPOSE HALT HALT ?HYPO

is confirmed.)
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Rules that FILTER

This rule will remove from consideration any action which has already beer performed
(i.e. so that a question will not be asked twice with the current model).

Filter rule 1: Filter Executed Actions
If:

(IS (EXECUTED? ?ACTION') YES)
Then:

(FILTER ?ACTION already executed)

This rule will remove from consideration any question which is. in any way. not

applicable in the present situation.

Filter rule 2: Filter Inapplicable Questions
If:

(IS (APPLICABILITY ?ACTI01U)

INAPPLICABLE)

Then: (FILTER ?ACTION needs prerequisites)
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- Rules that PREFER -

This rule wil give a preference to performing cheap actions which potentially trigger
a hypothesis.

Prefer rule 1: Prefer Cheap Triggering Data

If:
(IN COMPLETE-MODEL (CURRENT-GOALS))

(IS (POTENTIALLY-TRIGGERED ?ACTION)
:NONEMPTY)

(<= (COST ?ACTION) CHEAP)
Then:

(PREFER ?ACTION)

This rule will give a preference to those actions which are both cheap and have a
possibility of leading directly to the choice of a structural analysis.

Prefer rule 2: Prefer Cheap Conclusive Evidence
If:

(IN
GATHER-EVIDENCE-FOR-DIFFERENTIAL
(VALUE CURRENT-GOALS))

(IN ?ACTION

(POTENTIALLY-CONCLUSIVE-EVIDENCE
DIFFERENTIAL))

(<= (COST ?ACTION) CHEAP)
Then:

(PREFER ?ACTION)

This rule will give a preference to those actions which are both free and have a
possibility of leading indirectly to the choice of a structural analysis.

Prefer rule 3: Prefer Free Conclusive Evidence
If:

(IN
GATHER-EVIDENCE-FOR-DIFFERENTIAL
(VALUE CURRENT-GOALS))

(<= (COST ?ACTION) FREE)

(IN ?ACTION
(POTENTIAL-EVIDENCE

DIFFERENTIAL))
Then:

(PREFER ?ACTION)
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This rule will give a preference to free actions.

Prefer rule 4: Prefer Free Evidence

If:
(<= (COST ?ACTION) FREE)

Then:
(PREFER ?ACTION (COST ?ACTION))

This rule will give a preference to those actions which have a possibility of leading

directv to the lhoice of a structural analysis regardless of the actions cost.

Prefer rule 5: Prefer Conclusive Evidence

If:

(IN
GATHER-EVIDEICE-FOR-DIFFERENTIAL
(CURRENT-GOALS))

(IN ?ACTION

(POTENTIALLY-CONCLUSIVE-EVIDENCE
DIFFERENTIAL))

Then:

(PREFER ?ACTION conclusive evidence)

This rule gives a preference to actions which are cheap.

Prefer rule 6: Prefer Cheap Evidence

If:
(<= (COST ?ACTION) CHEAP)

Then:
(PREFER ?ACTION (COST ?ACTION))

This rule will give a preference to perfor ing actions which potentially trigger a
hypothesis regardless of the action's cost.

Prefer rule 7: Prefer Triggering Data

If:
(IN COMPLETE-MODEL (CURRENT-GOALS))

(IS (POTENTIALLY-TRIGGERED ?ACTION)
:KNOWN)

Then:

(PREFER ?ACTION)
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